Analyses of evolutionary algorithms
نویسنده
چکیده
Evolutionary algorithms (EAs) are a highly successful tool commonly used in practice to solve algorithmic problems. This remarkable practical value, however, is not backed up by a deep theoretical understanding. Such an understanding would facilitate the application of EAs to further problems. Runtime analyses of EAs are one way to expand the theoretical knowledge in this field. This thesis presents runtime analyses for three prominent problems in combinatorial optimization. Additionally, it provides probability theoretical tools that will simplify future runtime analyses of EAs. The first problem considered is the Single Source Shortest Path problem. The task is to find in a weighted graph for a given source vertex shortest paths to all other vertices. Developing a new analysis method we can give tight bounds on the runtime of a previously designed and analyzed EA for this problem. The second problem is the All-Pairs Shortest Path problem. Given a weighted graph, one has to find a shortest path for every pair of vertices in the graph. For this problem we show that adding a crossover operator to a natural EA using only mutation provably decreases the runtime. This is the first time that the usefulness of a crossover operator was shown for a combinatorial problem. The third problem considered is the Sorting problem. For this problem, we design a new representation based on trees. We show that the EA naturally arising from this representation has a better runtime than previously analyzed EAs.
منابع مشابه
OPTIMAL CONSTRAINED DESIGN OF STEEL STRUCTURES BY DIFFERENTIAL EVOLUTIONARY ALGORITHMS
Structural optimization, when approached by conventional (gradient based) minimization algorithms presents several difficulties, mainly related to computational aspects for the huge number of nonlinear analyses required, that regard both Objective Functions (OFs) and Constraints. Moreover, from the early '80s to today's, Evolutionary Algorithms have been successfully developed and applied as a ...
متن کاملTechno-economic operation optimization of a HRSG in combined cycle power plants based on evolutionary algorithms: A case study of Yazd, Iran
In this research study, energy, exergy and economic analyses is performed for a combined cycle power plant (CCPP) with a supplementary firing system. The purpose of this analyses is to evaluate the economic feasibility of a CCPP by applying an optimization techniques based on Evolutionary algorithms. Actually, the evolutionary algorithms of Firefly, PSO and NSGA-II are applied to minimize the c...
متن کاملEstimation of LPC coefficients using Evolutionary Algorithms
The vast use of Linear Prediction Coefficients (LPC) in speech processing systems has intensified the importance of their accurate computation. This paper is concerned with computing LPC coefficients using evolutionary algorithms: Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Dif-ferential Evolution (DE) and Particle Swarm Optimization with Differentially perturbed Velocity (PSO-DV...
متن کاملOptimization of sediment rating curve coefficients using evolutionary algorithms and unsupervised artificial neural network
Sediment rating curve (SRC) is a conventional and a common regression model in estimating suspended sediment load (SSL) of flow discharge. However, in most cases the data log-transformation in SRC models causing a bias which underestimates SSL prediction. In this study, using the daily stream flow and suspended sediment load data from Shalman hydrometric station on Shalmanroud River, Guilan Pro...
متن کاملNovel Hybrid Fuzzy-Evolutionary Algorithms for Optimization of a Fuzzy Expert System Applied to Dust Phenomenon Forecasting Problem
Nowadays, dust phenomenon is one of the important challenges in warm and dry areas. Forecasting the phenomenon before its occurrence helps to take precautionary steps to prevent its consequences. Fuzzy expert systems capabilities have been taken into account to assist and cope with the uncertainty associated to complex environments such as dust forecasting problem. This paper presents novel hyb...
متن کاملMulti-layer Clustering Topology Design in Densely Deployed Wireless Sensor Network using Evolutionary Algorithms
Due to the resource constraint and dynamic parameters, reducing energy consumption became the most important issues of wireless sensor networks topology design. All proposed hierarchy methods cluster a WSN in different cluster layers in one step of evolutionary algorithm usage with complicated parameters which may lead to reducing efficiency and performance. In fact, in WSNs topology, increasin...
متن کامل